ارتباط بین فعالیت الکترومایوگرافی عضلات اطراف زانو با حداکثر نیروهای عکس العمل زمین حین حرکت فرود تک پا

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکتری آسیب شناسی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دپارتمان بهداشت و طب ورزشی دانشگاه تهران، تهران، ایران

2 استادیار، گروه آسیب شناسی ورزشی و حرکات اصلاحی، پژوهشکده طب ورزشی، پژوهشگاه تربیت بدنی و علوم ورزشی، تهران، ایران

چکیده

مقدمه و اهداف
فعالیت عضلات کنترل­کننده مفصل زانو، بزرگی نیروهای عکس­العمل زمین را در طول فعالیت­های پرش-فرود تحت تاثیر قرار می­دهد. هدف از تحقیق حاضر بررسی ارتباط بین فعالیت الکترومایوگرافی عضلات زانو با حداکثر نیروهای عکس­العمل زمین بود.
مواد و روش­ ها
روش تحقیق حاضر از نوع همبستگی است. 20 ورزشکار مرد سالم (میانگین±انحراف استاندارد، سن 45/4±5/25 سال) به صورت در دسترس به عنوان نمونه انتخاب شدند. میزان فعالیت عضلات اطراف زانو شامل چهارسرران، همسترینگ و دوقلو در مرحله قبل و بعد از برخورد پا با زمین و ارتباط آن با حداکثر مولفه­های نیروی عکس­المعل زمین (عمودی، قدامی-خلفی و داخلی-خارجی) حین حرکت افت-فرود تک­پا مورد ارزیابی قرار گرفت. برای تحلیل داده­های تحقیق از ضریب همبستگی پیرسون استفاده شد.
یافته ­ها
نتایج تحقیق حاضر همبستگی معنادار و منفی را بین فعالیت عضله دوقلو خارجی در مرحله بعد از برخورد با تمام مولفه­های نیروی عکس­العمل زمین نشان داد (001/0P=). بین فعالیت عضله دوقلو داخلی در مرحله قبل از برخورد با تمام مولفه­های نیروی عکس­العمل زمین همبستگی مثبت و معنادار و در مرحله بعد از برخورد با مولفه­های عمودی و قدامی-خلفی همبستگی منفی و معنادار وجود داشت (001/0P=). همچنین بین فعالیت عضله همسترینگ خارجی و مولفه قدامی-خلفی نیروی عکس­العمل زمین در مرحله بعد از برخورد همبستگی منفی و معناداری وجود داشت (001/0P=).
نتیجه­ گیری
به نظر می­رسد عضلات همسترینگ خارجی و دوقلو (داخلی و خارجی) نقش مهمی در تعدیل حداکثر نیروهای عکس­العمل زمین حین حرکت افت-فرود تک­پا ایفا می­کند؛ بنابراین با توجه به نتایج به دست آمده از تحقیق حاضر، به مربیان و متخصصین توانبخشی پیشنهاد می­شود به منظور پیشگیری از آسیب رباط صلیبی به طور خاص بر روی فعالیت عضلات همسترینگ خارجی و دوقلو (داخلی و خارجی) تمرکز کنند.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Relationship between Electromyography Activity of the Knee Joint Muscles and Ground Reaction Forces during Single-Leg Drop Landing

نویسندگان [English]

  • Komeil Dashti Rostami 1
  • Fariba Mohammadi 2
1 PhD of Sports Injuries, Faculty of Physical Education and Sports sciences, Department of Health and Sports Medicine, University of Tehran Tehran, Iran
2 Assistant Professor of Sports Sciences Research Institute of Iran (SSRII), Tehran, Iran
چکیده [English]

Background and Aims: Activity of knee joint muscles can influence the magnitude of ground reaction forces during jump-landing tasks. The objective of the present study was to examine the relationship between electromyography activity of the knee joint muscles and ground reaction forces during single-leg drop landing task.      
Materials and Methods: A total of 20 healthy male athletes (mean ± standard deviation, age 25.4±4.45 years) participated in the present correlational study. Activity of knee joint muscles, including quadriceps, hamstrings, and gastrocnemius, at pre and post landing phases were analyzed and their relationships with ground reaction forces (vertical, anterior-posterior, and medial-lateral) were assessed during single leg vertical drop landing task. Pearson correlation coefficient was used for data analysis.   
Results: The results demonstrated significant negative correlation between lateral gastrocnemius muscle activity and all components of ground reaction forces (P= 0.001). Also, there was a significant positive correlation between medial gastrocnemius activity and all components of ground reaction forces at pre landing phase and also a significant negative correlation with vertical and anterior-posterior component at post landing phase (P=0.001). Moreover, there was a significant negative correlation between lateral hamstring activity and anterior-posterior ground reaction force at post-contact phase (P=0.001).
Conclusion:It seems that gastrocnemius (medial and lateral) and lateral hamstring muscles play important roles in adjusting ground reaction force components during single leg vertical drop landing task. According to the results of the current study, it is suggested that rehabilitation specialists focus especially on activation exercises for gastrocnemius (medial and lateral) and lateral hamstring muscles in order to prevent anterior cruciate ligament injury.

کلیدواژه‌ها [English]

  • knee
  • Electromyography activity
  • ground reaction force
  • Anterior Cruciate ligament
  1. Boden BP, Dean GS, Feagin JA, Garrett WE. Mechanisms of anterior cruciate ligament injury. Orthopedics. 2000;23(6):573-8.##
  2. Noyes F, Matthews D, Mooar P, Grood E. The symptomatic anterior cruciate-deficient knee. Part II: the results of rehabilitation, activity modification, and counseling on functional disability. JBJS. 1983;65(2):163-74. ##
  3. Agel J, Arendt EA, Bershadsky B. Anterior cruciate ligament injury in national collegiate athletic association basketball and soccer: a 13-year review. The American journal of sports medicine. 2005;33(4):524-31. ##
  4. Brukner P. Brukner & Khan's clinical sports medicine: McGraw-Hill North Ryde; 2012. ##
  5. Harmon KG, Ireland ML. Gender differences in noncontact anterior cruciate ligament injuries. Clinics in sports medicine. 2000;19(2):287-302. ##
  6. Griffin LY, Albohm MJ, Arendt EA, Bahr R, Beynnon BD, DeMaio M, et al. Understanding and preventing noncontact anterior cruciate ligament injuries: a review of the Hunt Valley II meeting, January 2005. The American journal of sports medicine. 2006;34(9):1512-32. ##
  7. Yu B, Lin C-F, Garrett WE. Lower extremity biomechanics during the landing of a stop-jump task. Clinical Biomechanics. 2006;21(3):297-305. ##
  8. Chappell JD, Creighton RA, Giuliani C, Yu B, Garrett WE. Kinematics and electromyography of landing preparation in vertical stop-jump: risks for noncontact anterior cruciate ligament injury. The American journal of sports medicine. 2007;35(2):235-41. ##
  9. Malinzak RA, Colby SM, Kirkendall DT, Yu B, Garrett WE. A comparison of knee joint motion patterns between men and women in selected athletic tasks. Clinical biomechanics. 2001;16(5):438-45. ##
10. James CR, Scheuermann BW, Smith MP. Effects of two neuromuscular fatigue protocols on landing performance. Journal of electromyography and Kinesiology. 2010;20(4):667-75. ##

11. Zadpoor AA, Nikooyan AA. The effects of lower-extremity muscle fatigue on the vertical ground reaction force: a meta-analysis. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2012;226(8):579-88. ##

12. Cerulli G, Benoit D, Lamontagne M, Caraffa A, Liti A. In vivo anterior cruciate ligament strain behaviour during a rapid deceleration movement: case report. Knee Surgery, Sports Traumatology, Arthroscopy. 2003;11(5):307-11. ##

13. Sell TC, Ferris CM, Abt JP, Tsai YS, Myers JB, Fu FH, et al. Predictors of proximal tibia anterior shear force during a vertical stop‐jump. Journal of Orthopaedic Research. 2007;25(12):1589-97. ##

14. Flaxman TE, Alkjær T, Smale KB, Simonsen EB, Krogsgaard MR, Benoit DL. Differences in EMG–moment relationships between ACL‐injured and uninjured adults during a weight‐bearing multidirectional force control task. Journal of Orthopaedic Research®. 2018. ##

15. Pamukoff DN, Pietrosimone BG, Ryan ED, Lee DR, Blackburn JT. Quadriceps function and hamstrings co-activation after anterior cruciate ligament reconstruction. Journal of athletic training. 2017;52(5):422-8. ##

16. Santello M. Review of motor control mechanisms underlying impact absorption from falls. Gait & posture. 2005;21(1):85-94. ##

17. Mahaki M, Mi'Mar R, Mahaki B. On the relationship between lower extremity muscles activation and peak vertical and posterior ground reaction forces during single leg drop landing. The Journal of sports medicine and physical fitness. 2015;55(10):1145-9. ##

18. Walsh M, Boling MC, McGrath M, Blackburn JT, Padua DA. Lower extremity muscle activation and knee flexion during a jump-landing task. Journal of athletic training. 2012;47(4):406-13. ##

19. Swanik CB, Lephart SM, Giraldo JL, DeMont RG, Fu FH. Reactive muscle firing of anterior cruciate ligament-injured females during functional activities. Journal of athletic training. 1999;34(2):121. ##

20. Winter DA. Biomechanics and motor control of human movement: John Wiley & Sons; 2009##

21. Dyhre‐Poulsen P, Simonsen EB, Voigt M. Dynamic control of muscle stiffness and H reflex modulation during hopping and jumping in man. The Journal of Physiology. 1991;437(1):287-304. ##

22. Dietz V, Noth J, Schmidtbleicher D. Interaction between pre‐activity and stretch reflex in human triceps brachii during landing from forward falls. The Journal of physiology. 1981;311(1):113-25. ##

23. Thompson HW, McKinley PA. Landing from a jump: the role of vision when landing from known and unknown heights. Neuroreport: An International Journal for the Rapid Communication of Research in Neuroscience. 1995. ##

24. Dunn TG, Gillig SE, Ponsor SE, Weil N, Utz SW. The learning process in biofeedback: is it feed-forward or feedback? Biofeedback and self-regulation. 1986;11(2):143-56. ##

25. Renström P, Arms S, Stanwyck T, Johnson R, Pope M. Strain within the anterior cruciate ligament during hamstring and quadriceps activity. The American journal of sports medicine. 1986;14(1):83-7. ##

26. Shelburne KB, Torry MR, Pandy MG. Contributions of muscles, ligaments, and the ground‐reaction force to tibiofemoral joint loading during normal gait. Journal of orthopaedic research. 2006;24(10):1983-90. ##

27. Lindström M, Felländer-Tsai L, Wredmark T, Henriksson M. Adaptations of gait and muscle activation in chronic ACL deficiency. Knee Surgery, Sports Traumatology, Arthroscopy. 2010;18(1):106-14. ##

28. Cibulka M, Wenthe A, Boyle Z, Callier D, Schwerdt A, Jarman D, et al. Variation in medial and lateral gastrocnemius muscle activity with foot position. International journal of sports physical therapy. 2017;12(2):233. ##

29. Fleming BC, Renstrom PA, Ohlen G, Johnson RJ, Peura GD, Beynnon BD, et al. The gastrocnemius muscle is an antagonist of the anterior cruciate ligament. Journal of orthopaedic research. 2001;19(6):1178-84. ##

30. Mokhtarzadeh H, Yeow CH, Goh JCH, Oetomo D, Malekipour F, Lee PV-S. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing. Journal of biomechanics. 2013;46(11):1913-20. ##

31. Sousa AS, Santos R, Oliveira FP, Carvalho P, Tavares JMR. Analysis of ground reaction force and electromyographic activity of the gastrocnemius muscle during double support. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2012;226(5):397-405. ##

32. Morin J-B, Gimenez P, Edouard P, Arnal P, Jiménez-Reyes P, Samozino P, et al. Sprint acceleration mechanics: the major role of hamstrings in horizontal force production. Frontiers in physiology. 2015;6:404. ##

33. Fujii M, Sato H, Takahira N. Muscle activity response to external moment during single-leg drop landing in young basketball players: The importance of biceps femoris in reducing internal rotation of knee during landing. Journal of sports science & medicine. 2012;11(2):255. ##

34. Hirokawa S, Solomonow M, Luo Z, Lu Y, D'ambrosia R. Muscular co-contraction and control of knee stability. Journal of Electromyography and Kinesiology. 1991;1(3):199-208. ##

35. Colby S, Francisco A, Bing Y, Kirkendall D, Finch M, Garrett W. Electromyographic and kinematic analysis of cutting maneuvers: implications for anterior cruciate ligament injury. The American journal of sports medicine. 2000;28(2):234-40. ##

36. Palmieri-Smith RM, McLean SG, Ashton-Miller JA, Wojtys EM. Association of quadriceps and hamstrings cocontraction patterns with knee joint loading. Journal of athletic training. 2009;44(3):256-63. ##

37. Baratta R, Solomonow M, Zhou B, Letson D, Chuinard R, D'ambrosia R. Muscular coactivation: the role of the antagonist musculature in maintaining knee stability. The American journal of sports medicine. 1988;16(2):113-22. ##

38. Malfait B, Dingenen B, Smeets A, Staes F, Pataky T, Robinson MA, et al. Knee and hip joint kinematics predict quadriceps and hamstrings neuromuscular activation patterns in drop jump landings. PloS one. 2016;11(4):e0153737. ##

39. De Britto MA, Carpes FP, Koutras G, Pappas E. Quadriceps and hamstrings prelanding myoelectric activity during landing from different heights among male and female athletes. Journal of Electromyography and Kinesiology. 2014;24(4):508-12. ##