الگوی راه‌رفتن بر اساس سینرژی عضلانی با رویکرد ارزیابی، تشخیص و بازتوانی: مروری سیستماتیک

نوع مقاله: مقاله مروری

نویسندگان

1 گروه بیومکانیک و آسیب شناسی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه خوارزمی، تهران، ایران

2 گروه بیومکانیک و آسیب شناسی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه خوارزمی، تهران، ایران.

چکیده

مقدمه و اهداف
به منظور اجرای فعالیت‌هایی از قبیل راه‌رفتن مفاصل و عضلات توسط سیستم عصبی به صورت هماهنگ به کار گرفته می‌شوند. همچنین به هنگام اجرای حرکات، تغییرات محیطی نیز افزوده می‌شود که سبب پیچیدگی بیشتر کنترل حرکت و عدم درک الگویی جامع می‌گردد. از این رو، سینرژی عضلانی تلاش دارد کنترل حرکاتی از قبیل راه‌رفتن را به گونه ای تشریح کند که بتوان یافته‌های آن را مانند یک الگو به تمامی شرایط مشابه تعمیم داد. لذا هدف مطالعه حاضر، مروری بر پژوهش‌های انجام شده در خصوص الگوی راه‌رفتن از منظر سینرژی عضلانی با رویکرد ارزیابی، تشخیص و بازتوانی بود.
مواد و روش ها
جستجوی مقالات مرتبط در بانک‌های اطلاعاتی مانند Science Direct، Pubmed، Springer، Elsevier، SID و Google Scholar  بر اساس معیارهای تحقیق، تعداد 13 مقاله از بین 136 مقاله انتخاب شد.
یافته ها
یافته‌ها نشان داد CNS با ساده‌سازی حرکت، اجرای آن را تسهیل می کند بدین منظور CNS برای اجرای راه‌رفتن به 5 ماژول نیاز دارد این الگو به حدی پایدار است که حتی تفاوتی بین جوان و سالمند و یا در سرعت‌های مختلف وجود ندارد و تنها الگوی زمانی به دلیل تغییرات نیازهای بیومکانیکی اندکی شیفت پیدا می‌کند اما در شرایط پاتولوژی، هم تعداد ماژول‌ها و هم الگوی زمانی آن‌ها تغییر می‌کند.
نتیجه گیری
با توجه به نتایج تحقیقات انجام‌شده، به نظر می‌رسد الگوی پایه سینرژی در راه رفتن در شرایط مختلف پایدار می باشد و بر اساس این پایداری و ثبات، می‌توان از آن به منظور ارزیابی الگوی حرکتی راه‌رفتن در افراد سالم و بیمار در هر دو بازتوانی و تشخیص استفاده کرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Gait Pattern based on Muscle Synergy Using Assessment, Diagnosis, and Rehabilitation Approach: A Systematic Review

نویسندگان [English]

  • Hossein Nabavinik 1
  • Heydar Sadeghi 2
1 Department of Sport Biomechanics and Sport Injuries, Faculty of Physical Education and Sport Science, Kharazmi University, Tehran, Iran
2 Department of Sport Biomechanics and Sport Injuries, Faculty of Physical Education and Sport Science, Kharazmi University, Tehran, Iran
چکیده [English]

Background and Aims: The nervous system uses muscles and joints in order to perform activities in a coordinated manner, such as walking. Environmental changes are also added while executing the movement, which cause more complexities in movement control and misunderstanding of a comprehensive model. Hence, muscle synergy attempts to explain movements such as walking in such a way that it can generalize its findings as a pattern to all the same conditions. The purpose of the present study was to review the research on walking patterns from the point of view of muscle synergy using the evaluation, diagnosis, and rehabilitation approach.
Materials and Methods: From among 136 articles, 13 were selected from databases, incuding Science Direct, Pubmed, Springer, Elsevier, SID, and Google Scholar, based on research criteria.
Results: The results showed that CNS facilitates its implementation by simplifying the movement. To this end, CNS needs 5 modules to walking. The pattern is so stable that even there is no difference between the young and the elderly or at different speeds. Only there is a slight shift in the time pattern due to changes in biomechanical needs, but in pathology conditions, there are some changes both in the number of modules and their time pattern.
Conclusion: According to the findings of the present research, it seems that the basic pattern of synergy is stable in walking under different conditions so that it can be used to assess the motor pattern in healthy individuals and patients in both rehabilitation and diagnosis.

کلیدواژه‌ها [English]

  • gait
  • Muscle Synergy
  • Pattern
1.  Bernstein N. The co-ordination and regulation of movements: Franklin Press; 1967.##

2.  Cheung VC, Piron L, Agostini M, Silvoni S, Turolla A, Bizzi E. Stability of muscle synergies for voluntary actions after cortical stroke in humans. Proceedings of the National Academy of Sciences. 2009; 106(46):19563-19568. ##

3.  D'Avella A, Bizzi E. Shared and specific muscle synergies in natural motor behaviors. Proceedings of the National Academy of Sciences of the United States of America. 2005; 102(8):3076-3081. ##

4.  Ivanenko YP, Cappellini G, Dominici N, Poppele RE, Lacquaniti F. Modular control of limb movements during human locomotion. The Journal of Neuroscience. 2007; 27(41):11149-11161. ##

5.  Shumway-Cook A, Woollacott MH. Motor control: translating research into clinical practice: Lippincott Williams & Wilkins; 2007. ##

6.  Crowninshield RD, Brand RA. A physiologically based criterion of muscle force prediction in locomotion. Journal of Biomechanics. 1981; 14(11):793-801. ##

7.  Anderson FC, Pandy MG. Static and dynamic optimization solutions for gait are practically equivalent. Journal of Biomechanics. 2001; 34(2):153-161. ##

8.  Herzog W, Binding P. Predictions of antagonistic muscular activity using nonlinear optimization. Mathematical Biosciences. 1992; 111(2):217-229. ##

9.  Prilutsky BI, Herzog W, Allinger TL. Forces of individual cat ankle extensor muscles during locomotion predicted using static optimization. Journal of Biomechanics. 1997; 30(10):1025-1033. ##

10.       Jinha A, Ait-Haddou R, Herzog W. Predictions of co-contraction depend critically on degrees-of-freedom in the musculoskeletal model. Journal of Biomechanics. 2006; 39(6):1145-1152. ##

11.       Erdemir A, McLean S, Herzog W, Van Den Bogert AJ. Model-based estimation of muscle forces exerted during movements. Clinical Biomechanics. 2007; 22(2):131-154. ##

12.       Winter DA. Biomechanics and motor control of human movement: John Wiley & Sons; 2009. ##

13.       Ting LH, Chvatal SA, Safavynia SA, McKay JL. Review and perspective: neuromechanical considerations for predicting muscle activation patterns for movement. International journal for numerical methods in biomedical engineering. 2012; 28(10):1003-1014. ##

14.       Berg K, Wood-Dauphinee S, Williams JI. The balance bcale: reliability assessment with elderly residents and patients with an acute stroke. Scandinavian Journal of Rehabilitation Medicine. 1995; 27(1):27-36. ##

15.       Horak FB. Clinical assessment of balance disorders. Gait and Posture. 1997; 6(1):76-84. ##

16.       Reisman DS, McLean H, Bastian AJ. Split-belt treadmill training poststroke: a case study. Journal of Neurologic Physical Therapy. 2010; 34(4):202-207. ##

17.       Reisman DS, Wityk R, Silver K, Bastian AJ. Locomotor adaptation on a split-belt treadmill can improve walking symmetry post-stroke. Brain. 2007; 130(7):1861-1872. ##

18.       Malone LA, Bastian AJ. Thinking about walking: effects of conscious correction versus distraction on locomotor adaptation. Journal of Neurophysiology. 2010; 103(4):1954-1962. ##

19.       Clark DJ, Ting LH, Zajac FE, Neptune RR, Kautz SA. Merging of healthy motor modules predicts reduced locomotor performance and muscle coordination complexity post-stroke. Journal of Neurophysiology. 2010; 103(2):844-857. ##

20.       Brunnström S. Movement therapy in hemiplegia: a neurophysiological approach: Medical Department, Harper & Row; 1970. ##

21.       Gowland C, deBruin H, Basmajian JV, Plews N, Burcea I. Agonist and antagonist activity during voluntary upper-limb movement in patients with stroke. Physical Therapy. 1992; 72(9):624-633. ##

22.       Dewald JP, Pope PS, Given JD, Buchanan TS, Rymer WZ. Abnormal muscle coactivation patterns during isometric torque generation at the elbow and shoulder in hemiparetic subjects. Brain. 1995; 118:495-510. ##

23.       Dewald JP, Beer RF. Abnormal joint torque patterns in the paretic upper limb of subjects with hemiparesis. Muscle Nerve. 2001; 24(2):273-283. ##

24.       Raasch CC, Zajac FE. Locomotor strategy for pedaling: muscle groups and biomechanical functions. Journal of Neurophysiology. 1999; 82(2):515-525. ##

25.       Kautz SA, Brown DA. Relationships between timing of muscle excitation and impaired motor performance during cyclical lower extremity movement in post-stroke hemiplegia. Brain. 1998; 121:515-526. ##

26.       Eng JJ, Teasell R, Miller WC, Wolfe DL, Townson AF, Aubut J-A, et al. Spinal cord injury rehabilitation evidence: methods of the SCIRE Systematic Review. Topics in Spinal Cord Injury Rehabilitation. 2007; 13(1):1-10. ##

27.       Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. Journal of Epidemiology and Community Health. 1998; 52(6):377-384. ##

28.       Serrancolí G, Monllau JC, Font-Llagunes JM. Analysis of muscle synergies and activation–deactivation patterns in subjects with anterior cruciate ligament deficiency during walking. Clinical Biomechanics. 2016; 31:65-73. ##

29.       Shuman B, Goudriaan M, Bar-On L, Schwartz MH, Desloovere K, Steele KM. Repeatability of muscle synergies within and between days for typically developing children and children with cerebral palsy. Gait and Posture. 2016; 45:127-132. ##

30.       Jonsdottir J, Lencioni T, Gervasoni E, Crippa A, Rovaris M, Ferrarin M, et al. Influence of gait rehabilitation on muscle synergies and their activation profiles in persons affected by multiple sclerosis. Gait and Posture. 2015; 42:21-21. ##

31.       Lu T, Fei L, Shuai C, Xu Z, De W, Xiang C. Muscle synergy analysis in children with cerebral palsy. Journal of Neural Engineering. 2015; 12(4):1-14. ##

32.       Hayes HB, Chvatal SA, French MA, Ting LH, Trumbower RD. Neuromuscular constraints on muscle coordination during overground walking in persons with chronic incomplete spinal cord injury. Clinical Neurophysiology. 2014; 125(10):2024-2035. ##

33.       Routson RL, Clark DJ, Bowden MG, Kautz SA, Neptune RR. The influence of locomotor rehabilitation on module quality and post-stroke hemiparetic walking performance. Gait and Posture. 2013; 38(3):511-517. ##

34.       Coscia M, Monaco V, Martelloni C, Chisari C, Micera S. Stroke involves different reorganization of muscle synergies between legs during walking. Gait and Posture. 2011; 33:3-3. ##

35.       Monaco V, Ghionzoli A, Micera S. Age-related modifications of muscle synergies and spinal cord activity during locomotion. Journal of Neurophysiology. 2010; 104(4):2092-2102. ##

36.       Neptune RR, Clark DJ, Kautz SA. Modular control of human walking: a simulation study. Journal of Biomechanics. 2009; 42(9):1282-1287. ##

37.       Cappellini G, Ivanenko YP, Poppele RE, Lacquaniti F. Motor patterns in human walking and running. Journal of Neurophysiology. 2006; 95(6):3426-3437. ##

38.       Ivanenko YP, Poppele RE, Lacquaniti F. Five basic muscle activation patterns account for muscle activity during human locomotion. The Journal of Physiology. 2004; 556(1):267-282. ##

39.       Merkle LA, Layne CS, Bloomberg JJ, Zhang JJ. Using factor analysis to identify neuromuscular synergies during treadmill walking. Journal of Neuroscience Methods. 1998; 82(2):207-214. ##

40.       Neptune RR, Kautz SA, Zajac FE. Contributions of the individual ankle plantar flexors to support, forward progression and swing initiation during walking. Journal of Biomechanics. 2001; 34(11):1387-1398. ##

41.       Ivanenko YP, Poppele RE, Lacquaniti F. Motor control programs and walking. The Neuroscientist. 2006; 12(4):339-348. ##