مقایسه هشت هفته تمرینات تناوبی شدید و محدود‌کننده جریان خون بر شاخص‌های بیوژنز میتوکندریایی و آنژیوژنز عضله پهن خارجی دوندگان مرد

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه فیزیولوژی ورزشی، دانشکده تربیت‌بدنی و علوم ورزشی، دانشگاه مازندران، بابلسر، ایران.

10.32598/sjrm.10.3.4

چکیده

زمینه و هدف: محدودسازی جریان خون پس از تمرین، یک روش تمرینی جدید است که از راه تغییرات همودینامیکی، متابولیکی و محرک هایپوکسی، می‌تواند سازگاری عضله اسکلتی در افراد تمرین‌کرده استقامتی را افزایش دهد. بنابراین هدف از انجام این پژوهش مقایسه تأثیر هشت هفته تمرینات تناوبی شدید و محدود‌کننده جریان خون بر PGC-1α و VEGF به ترتیب به عنوان شاخص‌های بیوژنز میتوکندریایی و آنژیوژنزی دوندگان مرد آماتور بود.
مواد و روش‌ها: 15 دونده مرد (سن 3±23 سال؛ قد: 5±172 سانتی‌متر؛ وزن: 4±73 کیلوگرم؛ شاخص توده بدن: 1/7±23) به صورت داوطلبانه در این تحقیق شرکت کردند که به سه گروه: 1) کنترل پایه، 2) تمرینات تناوبی شدید و 3) تمرینات محدود‌کننده جریان خون+تناوبی شدید (BFR) تقسیم شدند. گروه‌های تجربی سه جلسه در هفته (در هر جلسه شش وهله) تمرین را به مدت هشت هفته اجرا می‌کردند. قبل و بعد از هشت هفته، نمونه‌گیری بافتی از عضله پهن خارجی دوندگان با روش نمونه‌برداری سوزنی به عمل آمد و میزان بیان پروتئین‌های PGC-1α و VEGF با روش ایمونوهیستوشیمی مورد مطالعه قرار گرفت. تجزیه و تحلیل داده‌ها، با استفاده از آزمون آنالیز کوواریانس یک‌طرفه صورت گرفت و سطح معنی‌داری p<0/05 در نظر گرفته شد.
یافته‌ها: یافته‌ها نشان داد مقادیر PGC-1α در گروه‌های تناوبی شدید و BFR در مقایسه با گروه کنترل به ترتیب به میزان 54/9 و 60/85 درصد و همین‌طور سطوح VEGF به ترتیب به میزان 51/31 و 57/52 درصد به صورت معنی‌دار افزایش یافته است (p<0/05). همچنین اختلاف میان گروه‌های تجربی در بیان هر دو پروتئین معنی‌دار بود (p<0/05).
نتیجه‌گیری: با توجه به اینکه فعال‌سازی VEGF از مسیر PGC-1α بخشی از فرایندهای سلولی مولکولی وابسته به تمرینات تناوبی شدید است، به نظر می‌رسد تلفیق تمرینات تناوبی شدید و BFR می‌تواند به طور مؤثری فرایند رگ‌زایی در عضله پهن خارجی دوندگان آماتور را تحت تأثیر قرار دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Comparison of Eight Weeks of HIIT and BFR on Mitochondrial Biogenesis and Angiogenesis Markers in Vastus Lateralis Muscle of Amateur Male Runners

نویسندگان [English]

  • Seyyed Yaser Alavi
  • Shadmehr Mirdar
Department of Exercise Physiology, Faculty of Physical Education and Sports Sciences, University of Mazandaran, Babolsar, Iran.
چکیده [English]

Background and Aims: Post-exercise Blood Flow Restriction (BFR) is a novel training method that, through alterations to the haemodynamic, metabolic, and hypoxic stimulus, could augment skeletal muscle adaptation in endurance-trained individuals. This study aimed to compare the effect of eight weeks of High-Intensity Interval Training (HIIT) and BFR on PGC-1α and Vascular Endothelial Growth Factor (VEGF) as mitochondrial biogenesis and angiogenesis biomarkers, respectively, in amateur male runners.
Methods: In the current study, 15 runners (Meas±SD of age: 23±3 years; height: 172±5 cm; weight: 73±4 kg: BMI: 23±1.7 kg/m2) voluntarily participating in this study were divided into three groups: 1-Control 2-HIIT and 3-HIIT+BFR or BFR. The experimental groups performed three sessions a week (six trials each session) for eight weeks. The biopsy samples were collected from the vastus lateralis muscle at the first and end of eight weeks. The protein expression levels of the PGC-1α and VEGF were studied by immunohistochemical method. Data analysis was performed using the one-way Analysis of Covariance (ANCOVA), and a significance level of P<0.05 was considered.
Results: The findings showed that PGC-1α values were significantly increased in the HIIT and BFR groups (54.9% and 60.85%, respectively) compared to the control group, as well as VEGF levels were 51.31% and 57.52%, respectively (P<0.05). There were also significant differences between experimental groups in the protein expressions (P<0.05).
Conclusion: Given that activation of VEGF from the PGC-1 pathway is part of cellular-molecular mechanisms of high-intensity interval training, It seems that the combination of intense interval training and BFR can effectively affect the process of angiogenesis in the vastus lateralis muscle of amateur runners.

کلیدواژه‌ها [English]

  • High-Intensity Interval Training (HIIT)
  • PGC-1α
  • Vascular Endothelial Growth Factor (VEGF)
  1. Macinnis MJ, Gibala MJ. Physiological adaptations to interval training and the role of exercise intenSITy. The Journal of Physiology. 2017; 595(9):2915-30. [DOI:10.1113/JP273196] [PMID] [PMCID]
  2. Gibala J, Little JP, MacDonald MJ, Hawley JA. Physiological adaptations to low- volume, high intenSITy interval training in health and disease. The Journal of Physiology. 2012. 590(5):1077-84. [DOI:10.1113/jphysiol.2011.224725] [PMID] [PMCID]
  3. Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL. Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during in human skeletal muscle. The Journal of Physiology. 2010; 588(23):4795-810. [DOI:10.1113/jphysiol.2010.199448] [PMID] [PMCID]
  4. Little JP, Safdar A, Wilkin GP, Tarnopolsky MA, Gibala MJ. A practical model of low volume high intenSITy interval training induces mitochondrial biogenesis in human skeletal muscle; potential mechanisms. The Journal of Physiology. 2010; 588(6):1011-22. [DOI:10.1113/jphysiol.2009.181743] [PMID] [PMCID]
  5. Chinsomboon J, Ruas J, Gupta RK, Thom R, Shoag J, Rowe GC, et al. The transcriptional coactivator PGC-1α mediates exercise induced angiogenesis in skeletal muscle. Proceedings of the National Academy of Sciences of the United States of America. 2009; 106(50):21401-6. [DOI:10.1073/pnas.0909131106] [PMID] [PMCID]
  6. Leick L, Hellsten Y, Fentz J, Lyngby SS, Wojtaszewski JFP, Hidalgo J, et al. PGC-1α mediates exercise induced skeletal muscle VEGF expression in mice. American Journal of Physiology-Endocrinology and Metabolism. 2009; 297(1):92-103. [DOI:10.1152/ajpendo.00076.2009] [PMID]
  7. Bayati M, Gharakhanlou R, Nikkhah M, Amani Shalamzari S. The Effect of Four Weeks of High-intensity Interval Training on PGC-1α and VEGF Protein Contents in Skeletal Muscle of Active Men. Journal of Arak University of Medical Sciences. 2018; 21(3):24-32. http://jams.arakmu.ac.ir/article-1-5641-en.html
  8. Gliemann L, Gunnarsson TP, Hellsten Y, Bangsbo J. 10-20-30 training increases performance and lowers blood pressure and VEGF in runners. Scandinavian Journal of Medicine & Science in Sports. 2015; 25(5):e479-89.. [DOI:10.1111/sms.12356] [PMID]
  9. Spranger MD, Krishnan AC, Levy PD, O'Leary DS, Smith SA. Blood flow restriction training and the exercise pressor reflex: A call for concern. American Journal of Physiology-Heart and Circulatory Physiology. 2015; 309(9):H1440-52. [DOI:10.1152/ajpheart.00208.2015] [PMID] [PMCID]
  10. Kaijser LE, Sundberg CJ, Eiken O, Nygren AN, Esbjornsson M, Sylven C, et al. Muscle oxidative capacity and work performance after training under local leg ischemia. Journal of Applied Physiology. 1990; 69(2):785-7. [DOI:10.1152/jappl.1990.69.2.785] [PMID]
  11. Abe T, Fujita S, Nakajima T, Sakamaki M, Ozaki H, Ogasawara R, et al. Effects of low-intensity cycle training with restricted leg blood flow on thigh muscle volume and VO2max in young men. Journal of Sports Science & Medicine. 2010; 9(3):452-8. [PMCID] [PMID]
  12. Park S, Kim JK, Choi HM, Kim HG, Beekley MD, Nho H. Increase in maximal oxygen uptake following 2-week walk training with blood flow occlusion in athletes. European Journal of Applied Physiology. 2010; 109(4):591-600. [DOI:10.1007/s00421-010-1377-y] [PMID]
  13. Paton CD, Addis SM, Taylor LA. The effects of muscle blood flow restriction during running training on measures of aerobic capacity and run time to exhaustion. European Journal of Applied Physiology. 2017; 117(12):2579-85. [DOI:10.1007/s00421-017-3745-3] [PMID]
  14. Paiva FM, Vianna LC, Fernandes IA, Nóbrega AC, Lima RM. Effects of disturbed blood flow during exercise on endothelial function: A time course analysis. Brazilian Journal of Medical and Biological Research. 2016; 49. [DOI:10.1590/1414-431X20155100]
  15. Karabulut M, Mccarron J, Abe T, Sato Y, Bemben M. The effects of different initial restrictive pressures used to reduce blood flow and thigh composition on tissue oxygenation of the quadriceps. Journal of Sports Sciences. 2011; 29(9):951-8. [DOI:10.1080/02640414.2011.572992] [PMID]
  16. Suga T, Okita K, Takada S, Omokawa M, Kadoguchi T, Yokota T, et al. Effect of multiple set on intramuscular metabolic stress during low-intensity resistance exercise with blood flow restriction. European Journal of Applied Physiology. 2012; 112(11):3915-20. [DOI:10.1007/s00421-012-2377-x] [PMID] [PMCID]
  17. Takarada Y, Sato Y, Ishii N. Effects of resistance exercise combined with vascular occlusion on muscle function in athletes. European Journal of Applied Physiology. 2002; 86(4):308-14. [DOI:10.1007/s00421-001-0561-5] [PMID]
  18. Christiansen D, Murphy RM, Bangsbo J, Stathis CG, Bishop DJ. Increased FXYD1 and PGC-1α mRNA after blood flow-restricted running is related to fibre type-specific AMPK signalling and oxidative stress in human muscle. Acta Physiologica. 2018; 223(2):e13045. [DOI:10.1111/apha.13045] [PMID] [PMCID]
  19. Taylor CW, Ingham SA, Ferguson RA. Acute and chronic effect of sprint interval training combined with postexercise blood-flow restriction in trained individuals. Experimental Physiology. 2016; 101(1):143-54. [DOI:10.1113/EP085293] [PMID]
  20. Mitchell EA, Martin NR, Turner MC, Taylor CW, Ferguson RA. The combined effect of sprint interval training and postexercise blood flow restriction on critical power, capillary growth, and mitochondrial proteins in trained cyclists. Journal of Applied Physiology. 2019; 126(1):51-9. [DOI:10.1152/japplphysiol.01082.2017] [PMID]
  21. Hoshino D, Kitaoka Y, Hatta H. High-intensity interval training enhances oxidative capacity and substrate availability in skeletal muscle. The Journal of Physical Fitness and Sports Medicine. 2016; 5(1):13-23. [DOI:10.7600/jpfsm.5.13]
  22. Hood DA. Invited Review: contractile activity-induced mitochondrial biogenesis in skeletal muscle. Journal of Applied Physiology. 2001; 90(3):1137-57. [DOI:10.1152/jappl.2001.90.3.1137] [PMID]
  23. Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1α. Nature. 2008; 451(7181):1008-12. [DOI:10.1038/nature06613] [PMID]
  24. Hoier B, Passos M, Bangsbo J, Hellsten Y. Intense intermittent exercise provides weak stimulus for vascular endothelial growth factor secretion and capillary growth in skeletal muscle. Experimental Physiology. 2013; 98(2):585-97. [DOI:10.1113/expphysiol.2012.067967] [PMID]
  25. Cocks M, Shaw CS, Shepherd SO, Fisher JP, Ranasinghe AM, Barker TA, et al. Sprint interval and endurance training are equally effective in increasing muscle microvascular density and eNOS content in sedentary males. The Journal of Physiology. 2013; 591(3):641-56. [DOI:10.1113/jphysiol.2012.239566] [PMID] [PMCID]
  26. Gliemann, L. Training for skeletal muscle capillarization: a Janus‑faced role of exercise intenSITy? European Journal of Applied Physiology. 2016; 116:1443-4. [DOI:10.1007/s00421-016-3419-6] [PMID]
  27. Gundermann DM, Fry CS, Dickinson JM, Walker DK, Timmerman KL, Drummond MJ, Volpi E, Rasmussen BB. Reactive hyperemia is not responsible for stimulating muscle protein synthesis following blood flow restriction exercise. Journal of Applied Physiology. 2012; 112(9):1520-8. [DOI:10.1152/japplphysiol.01267.2011] [PMID] [PMCID]
  28. Weston AR, Myburgh KH, Lindsay FH, Dennis SC, Noakes TD, Hawley JA. Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. European Journal of Applied Physiology and Occupational Physiology. 1996; 75(1):7-13. [DOI:10.1007/s004210050119] [PMID]
  29. Bickham DC, Bentley DJ, Le Rossignol PF, Cameron-Smith D. The effects of short-term sprint training on MCT expression in moderately endurance-trained runners. European Journal of Applied Physiology. 2006; 96(6):636-43. [DOI:10.1007/s00421-005-0100-x] [PMID]