اثر تمرین روی سطح شن بر هم‌انقباضی جهت‌دار و عمومی عضلات مفصل مچ پا طی دویدن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مدیریت و بیومکانیک ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران.

2 گروه فیزیولوژی ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه محقق اردبیلی، اردبیل، ایران.

10.32598/sjrm.10.3.7

چکیده

زمینه و هدف: پرونیشن بیش از حد پا یکی از مهم‌ترین عوامل ایجاد آسیب‌های اسکلتی عضلانی در اندام تحتانی است که منجر به افزایش بار‌های مکانیکی وارد بر ساختار اندام تحتانی می‌شود. سطح شن به دلیل غیر قابل پیش‌بینی و متحرک بودن، اهمیت ویژه‌ای در مکانیک حرکت انسان دارد. هدف از پژوهش حاضر، بررسی اثر تمرین روی سطح شن بر هم‌انقباضی جهت‌دار و عمومی عضلات مفصل مچ پا در افراد با پرونیشن بیش از حد پا طی دویدن بود. 
مواد و روش‌ها: پژوهش حاضر از نوع کارآزمایی بالینی تصادفی بود. نمونه‌های آماری پژوهش 30 مرد با پرونیشن بیش از حد پا بودند که به صورت تصادفی به دو گروه کنترل (15 نفر) و آزمایش (15 نفر) تخصیص یافتند. تمرین روی سطح شن برای آزمودنی‌های گروه آزمایش طی هشت هفته که شامل دویدن آرام، گام بلند، پریدن، لی لی کردن و دویدن سریع بود، اعمال شد. فعالیت عضلات ساقی قدامی و دوقلوی داخلی طی دویدن، با دستگاه الکترومایوگرافی هشت‌کاناله و با الکترود سطحی ثبت شد. از آزمون آنالیز واریانس دوسویه جهت تحلیل آماری در سطح معنی‌داری 0/05>P استفاده شد.
یافته‌ها: نتایج، افزایش معنی‌داری را در هم‌انقباضی جهت‌دار مچ پا (0/040=P) طی پس‌آزمون نسبت به پیش‌آزمون در فاز پیشروی گروه آزمایش طی تمرین روی شن نشان داد. سایر مولفه‌های هم‌انقباضی جهت‌دار در بقیه فاز‌ها و هم‌انقباضی عمومی در همه فاز‌ها، اختلاف معنی‌داری را بعد از تمرین روی شن نشان ندادند (0/05<P). 
نتیجه‌گیری: به نظر می‌رسد افزایش هم‌انقباضی جهت‌دار عضلات مفصل مچ پا در فاز پیشروی، احتمال آسیب‌های اندام تحتانی و ناپایداری مچ پا در افراد با پرونیشن بیش از حد پا را بعد از تمرین روی شن در این فاز کاهش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Sand Surface Training on Directed and General Co-contraction of Ankle Joint Muscles During Running

نویسندگان [English]

  • Amir Fatollahi 1
  • Amir Ali Jafarnezhadgero 1
  • Saeed Alihosseini 2
1 Department of Sport Management and Biomechanics, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
2 Department of Sport Physiology, Faculty of Educational Sciences and Psychology, University of Mohaghegh Ardabili, Ardabil, Iran.
چکیده [English]

Background and Aims: Foot overpronation is one of the most critical factors that cause musculoskeletal injuries and lead to greater mechanical loads in the lower limb structure. Sand is an unstable and unpredictable surface that has particular importance in human movement mechanics. The purpose of this study was to investigate the effect of sand surface training on directed and general co-contraction of ankle joint muscles in individuals with foot overpronation during running.
Methods: The present study was a randomized clinical trial type. Statistical samples of the present study included 15 males with foot overpronation in the control group and 15 males with foot overpronation in the intervention group. Individuals in the intervention group performed a sand surface training program consisting of continuous jogging, striding, bounding, galloping, and short sprints for 8 weeks. Tibialis anterior and gastrocnemius medialis muscles activity was evaluated by an 8-channel electromyography system with a surface electrode during running. A two-way ANOVA test was used for statistical analysis at the significant level P<0.05.
Results: The results demonstrated greater ankle-directed co-contraction in the push-off phase during post-test compared with the pre-test in the intervention group during training on sand (P=0.040). Other components of directed co-contraction in the different stages and general co-contraction in all phases did not demonstrate significant differences after sand training (P>0.05).
Conclusion: It seems greater ankle joint directed co-contraction in the push-off phase after training protocol reduced the risks of lower limb injuries and ankle instability in individuals with foot overpronation in this phase.

کلیدواژه‌ها [English]

  • Foot overpronation
  • sand surface training
  • directed co-contraction
  • general co-contraction
  1. Van Gent BR, Siem DD, van Middelkoop M, van Os TA, Bierma-Zeinstra SS, Koes BB. Incidence and determinants of lower extremity running injuries in long distance runners: a systematic review. British journal of sports m 2007; 41(8):469-80. [DOI:10.1136/bjsm.2006.033548] [PMID] [PMCID]
  2. Prentice WE. Rehabilitation techniques for sports medicine and athletic training. Boston: McGraw-Hill; 2004. https://search.library.wisc.edu/catalog/9910018157502121/cite
  3. Razeghi M, Batt ME. Foot type classification: a critical review of current methods. Gait & p 2002; 15(3):282-91. [DOI:10.1016/s0966-6362(01)00151-5]
  4. Periya SN, Alagesan J. Prevalence and incidence of flat foot among Middle East and Asian Population: An Overview. International Journal of Pharmaceutical Science and Health. 2017; 4(7):1-12. https://www.researchgate.net/publication/319405949_Prevalence_and_incidence_of_flat_foot_among_Middle_East_and_Asian_PopulationAn_Overview
  5. Vicenzino B, Franettovich M, McPoil T, Russell T, Skardoon G. Initial effects of anti-pronation tape on the medial longitudinal arch during walking and running. British Journal of Sports Medicine. 2005; 39(12):939-43. [DOI:10.1136/bjsm.2005.019158][PMID][PMCID]
  6. Lee MS, Vanore JV, Thomas JL, Catanzariti AR, Kogler G, Kravitz SR, et al. Diagnosis and treatment of adult flatfoot. The Journal of Foot & Ankle Surgery. 2005; 44(2):78-113. [DOI:10.1053/j.jfas.2004.12.001][PMID]
  7. Menz HB, Morris ME, Lord SR. Foot and ankle characteristics associated with impaired balance and functional ability in older people. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences. 2005; 60(12):1546-52. [DOI:10.1093/gerona/60.12.1546][PMID]
  8. Dahle LK, Mueller MJ, Delitto A, Diamond JE. Visual assessment of foot type and relationship of foot type to lower extremity injury. Journal of Orthopaedic & Sports Physical Therapy. 1991; 14(2):70-4. [DOI:10.2519/jospt.1991.14.2.70][PMID]
  9. Resende RA, Pinheiro LS, Ocarino JM. Effects of foot pronation on the lower limb sagittal plane biomechanics during gait. Gait & p 2019; 68:130-5. [DOI:10.1016/j.gaitpost.2018.10.025][PMID]
  10. Hunt AE, Smith RM. Mechanics and control of the flat versus normal foot during the stance phase of walking. Clinical Biomechanics. 2004; 19(4):391-7. [DOI:10.1016/j.clinbiomech.2003.12.010][PMID]
  11. Cote KP, Brunet ME, II BMG, Shultz SJ. Effects of pronated and supinated foot postures on static and dynamic postural stability. Journal of Athletic Training. 2005; 40(1):41-6. [PMCID]
  12. Gray EG, Basmajian JV. Electromyography and cinematography of leg and foot (“normal” and flat) during walking. The anatomical r 1968; 161(1):1-15. [DOI:10.1002/ar.1091610101][PMID]
  13. Holmes CF, Wilcox D, Fletcher JP. Effect of a modified, low-dye medial longitudinal arch taping procedure on the subtalar joint neutral position before and after light exercise. Journal of Orthopaedic & Sports Physical Therapy. 2002; 32(5):194-201. [DOI:10.2519/jospt.2002.32.5.194][PMID]
  14. Rodgers MM, Leveau BF. Effectiveness of foot orthotic devices used to modify pronation in runners. Journal of Orthopaedic & Sports Physical Therapy. 1982; 4(2):86-90. [DOI:10.2519/jospt.1982.4.2.86][PMID]
  15. Feltner ME, MacRae H, MacRae PG, Turner NS, Hartman CA, Summers ML, et al. Strength training effects on rearfoot motion in running. Medicine and Science in Sports and Exercise. 1994; 26(8):1021-7. [DOI:10.1249/00005768-199408000-00014] [PMID]
  16. Pires R, Falcari T, Campo AB, Pulcineli BC, Hamill J, Ervilha UF. Using a support vector machine algorithm to classify lower-extremity EMG signals during running shod/unshod with different foot strike patterns. Journal of Applied Biomechanics. 2019; 35(1):87-90. [DOI:10.1123/jab.2017-0349][PMID]
  17. Chalard A, Belle M, Montané E, Marque P, Amarantini D, Gasq D. Impact of the EMG normalization method on muscle activation and the antagonist-agonist co-contraction index during active elbow extension: Practical implications for post-stroke subjects. Journal of Electromyography and Kinesiology. 2020; 51:102403. [DOI:10.1016/j.jelekin.2020.102403][PMID]
  18. Khandha A, Manal K, Capin J, Wellsandt E, Marmon A, Snyder-Mackler L, et al. High muscle co-contraction does not result in high joint forces during gait in anterior cruciate ligament deficient knees. Journal of Orthopaedic Research. 2019; 37(1):104-12. [DOI:10.1002/jor.24141][PMID][PMCID]
  19. Hubley-Kozey C, Deluzio K, Dunbar M. Muscle co-activation patterns during walking in those with severe knee osteoarthritis. Clinical Biomechanics. 2008; 23(1):71-80. [DOI:10.1016/j.clinbiomech.2007.08.019][PMID]
  20. Diamond LE, Hoang HX, Barrett RS, Loureiro A, Constantinou M, Lloyd DG, et al. Individuals with mild-to-moderate hip osteoarthritis walk with lower hip joint contact forces despite higher levels of muscle co-contraction compared to healthy individuals. Osteoarthritis and Cartilage. 2020; 28(7):924-31. [DOI:10.1016/j.joca.2020.04.008][PMID]
  21. Heiden TL, Lloyd DG, Ackland TR. Knee joint kinematics, kinetics and muscle co-contraction in knee osteoarthritis patient gait. Clinical Biomechanics. 2009; 24(10):833-41. [DOI:10.1016/j.clinbiomech.2009.08.005][PMID]
  22. Lloyd DG, Buchanan TS. Strategies of muscular support of varus and valgus isometric loads at the human knee. Journal of Biomechanics. 2001; 34(10):1257-67. [DOI:10.1016/s0021-9290(01)00095-1]
  23. Chen M. [Neuromechanical effects of pronated foot on knee joint stability (Korean)] [PhD. dissertation]. South Korea: Yonsei University; 2011.https://ir.ymlib.yonsei.ac.kr/handle/22282913/136486
  24. Hak L, Houdijk H, Steenbrink F, Mert A, van der Wurff P, Beek PJ, et al. Stepping strategies for regulating gait adaptability and stability. Journal of Biomechanics. 2013; 46(5):905-11. [DOI:10.1016/j.jbiomech.2012.12.017][PMID]
  25. Marigold DS, Patla AE. Age-related changes in gait for multi-surface terrain. Gait & Posture. 2008; 27(4):689-96. [DOI:10.1016/j.gaitpost.2007.09.005][PMID]
  26. van den Berg ME, Barr CJ, McLoughlin JV, Crotty M. Effect of walking on sand on gait kinematics in individuals with multiple sclerosis. Multiple Sclerosis and Related Disorders. 2017; 16:15-21. [DOI:10.1016/j.msard.2017.05.008][PMID]
  27. Impellizzeri FM, Rampinini E, Castagna C, Martino F, Fiorini S, Wisloff U. Effect of plyometric training on sand versus grass on muscle soreness and jumping and sprinting ability in soccer players. British journal of sports m 2008; 42(1):42-6. [DOI:10.1136/bjsm.2007.038497][PMID]
  28. Jafarnezhadgero A, Fatollahi A, Amirzadeh N, Siahkouhian M, Granacher U. Ground reaction forces and muscle activity while walking on sand versus stable ground in individuals with pronated feet compared with healthy controls. PloS o 2019; 14(9):e0223219. [DOI:10.1371/journal.pone.0223219][PMID][PMCID]
  29. Durai DBJ, Shaju MF. Effect of sand running training on speed among school boys. International Journal of Physical Education, Sports and Health. 2019; 6(3):117-22. https://www.kheljournal.com/archives/?year=2019&vol=6&issue=3&part=B&ArticleId=1475
  30. Zamparo P, Perini R, Orizio C, Sacher M, Ferretti G. The energy cost of walking or running on sand. European journal of applied physiology and occupational p 1992; 65(2):183-7. [DOI:10.1007/bf00705078][PMID]
  31. Pinnington HC, Lloyd DG, Besier TF, Dawson B. Kinematic and electromyography analysis of submaximal differences running on a firm surface compared with soft, dry sand. European journal of Applied Physiology. 2005; 94(3):242-53. [DOI:10.1007/s00421-005-1323-6][PMID]
  32. World Medical Association. World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Bulletin of the World Health Organization. 2001; 79(4):373-4. [PMCID][PMID]
  33. Murley GS, Menz HB, Landorf KB. Foot posture influences the electromyographic activity of selected lower limb muscles during gait. Journal of foot and Ankle Research. 2009; 2:35. [DOI:10.1186/1757-1146-2-35][PMID][PMCID]
  34. Powell DW, Long B, Milner CE, Zhang S. Frontal plane multi-segment foot kinematics in high-and low-arched females during dynamic loading tasks. Human movement s 2011; 30(1):105-14. [DOI:10.1016/j.humov.2010.08.015][PMID]
  35. Abe D, Muraki S, Yanagawa K, Fukuoka Y, Niihata S. Changes in EMG characteristics and metabolic energy cost during 90-min prolonged running. Gait & Posture. 2007; 26(4):607-10. [DOI:10.1016/j.gaitpost.2006.12.014][PMID]
  36. Gardinier ES. The relationship between muscular co-contraction and dynamic knee stiffness in ACL-deficient non-copers (MSc. Thesis)]. Delaware: University of Delaware; 2009. https://udspace.udel.edu/handle/19716/4251#files-area
  37. Williams DS, McClay IS, Hamill J, Buchanan TS. Lower extremity kinematic and kinetic differences in runners with high and low arches. Journal of applied b 2001; 17(2):153-63. [DOI:10.1123/jab.17.2.153]
  38. Houck JR, Tome JM, Nawoczenski DA. Subtalar neutral position as an offset for a kinematic model of the foot during walking. Gait & p 2008; 28(1):29-37. [DOI:10.1016/j.gaitpost.2007.09.008][PMID]
  39. Oatis CA. Kinesiology: the mechanics and pathomechanics of human movement. 2th Philadelphia: Lippincott Williams & Wilkins; 2009. https://books.google.com/books/about/Kinesiology.html?id=J6juAAAAMAAJ
  40. Chamberlain A, Munro W, Rickard A. Muscle imbalance. In: Porter SB, Tidy NM, editors. Tidys Physiotherapy. 15th Edinburgh: Elsevier; 2013. [DOI:10.1016/b978-0-7020-4344-4.00014-6]
  41. Mizrahi J, Verbitsky O, Isakov E. Fatigue-induced changes in decline running. Clinical b 2001; 16(3):207-12. [DOI:10.1016/s0268-0033(00)00091-7]
  42. Twomey D, McIntosh A. The effects of low arched feet on lower limb gait kinematics in children. The Foot. 2012; 22(2):60- [DOI:10.1016/j.foot.2011.11.005][PMID]
  43. Farahpour N, Jafarnezhad A, Damavandi M, Bakhtiari A, Allard P. Gait ground reaction force characteristics of low back pain patients with pronated foot and able-bodied individuals with and without foot pronation. Journal of b 2016; 49(9):1705-10. [DOI:10.1016/j.jbiomech.2016.03.056][PMID]
  44. Farahpour N, Jafarnezhadgero A, Allard P, Majlesi M. Muscle activity and kinetics of lower limbs during walking in pronated feet individuals with and without low back Journal of Electromyography and Kinesiology. 2018; 39:35-41. [DOI:10.1016/j.jelekin.2018.01.006][PMID]
  45. Alavi-Mehr SM, Jafarnezhadgero A, Salari-Esker F, Zago M. Acute effect of foot orthoses on frequency domain of ground reaction forces in male children with flexible flatfeet during walking. The Foot. 2018; 37:77-84. [DOI:10.1016/j.foot.2018.05.003][PMID]
  46. Jafarnezhadgero A, Madadi-Shad M, Alavi-Mehr SM, Granacher U. The long-term use of foot orthoses affects walking kinematics and kinetics of children with flexible flat feet: A randomized controlled trial. PloS o 2018; 13(10):e0205187. [DOI:10.1371/journal.pone.0205187][PMID][PMCID]
  47. Jafarnezhadgero A, Alavi-Mehr SM, Granacher U. Effects of anti-pronation shoes on lower limb kinematics and kinetics in female runners with pronated feet: The role of physical fatigue. PloS o 2019; 14(5):e0216818. [DOI:10.1371/journal.pone.0216818][PMID][PMCID]
  48. Jafarnezhadgero AA, Sorkhe E, Oliveira AS. Motion-control shoes help maintaining low loading rate levels during fatiguing running in pronated female runners. Gait & posture. 2019; 73:65-70. [DOI:10.1016/j.gaitpost.2019.07.133][PMID]
  49. Jafarnezhadgero A, Sorkhe E, Meamarbashi A. Efficacy of motion control shoes for reducing the frequency response of ground reaction forces in fatigued runners. Journal of Advanced Sport Technology. 2019; 3(1):8-21.http://jast.uma.ac.ir/article_763_0.html
  50. Madadi-Shad M, Jafarnezhadgero AA, Sheikhalizade H, Dionisio VC. Effect of a corrective exercise program on gait kinetics and muscle activities in older adults with both low back pain and pronated feet: A double-blind, randomized controlled trial. Gait & Posture. 2020; 76:339-45. [DOI:10.1016/j.gaitpost.2019.12.026][PMID]