نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکتری، گروه بیومکانیک ورزشی، دانشگاه خوارزمی، تهران، ایران
2 استاد، گروه بیومکانیک و آسیب شناسی ورزشی، دانشکده تربیت بدنی و علوم ورزشی، دانشگاه خوارزمی، تهران، ایران
3 استادیار بیومکانیک ورزشی، بخش علوم ورزشی، دانشکده علوم تربیتی و روانشناسی، دانشگاه شیراز، شیراز، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Background and Aims: Nowadays, suspended exercises have been considered as an effective way to improve core stability in healthy individuals and those with musculoskeletal disorders. However, the activity of different core muscles while performing suspended exercises has not been investigated yet. Therefore, the purpose of the present study was to compare electromyographic activity of selected core muscles while performing selected core stability exercises using TRX.
Materials and Methods: A total of 15 healthy physically active female students participated in the current study. Each participant performed three repetitions of each of bridge, plank, and lunge exercises with the feet placed inside the TRX foot straps. Simultaneously, surface electromyographic data was collected on rectus abdominis, external oblique, erector spine lumbalis, and superficial lumbar multifidus. Resulting row data was amplitude normalized and the root mean square was then determined. Repeated-measure analysis of variance was used to determine any differences across the three exercises on a test group (p=0.05).
Results: Different levels of muscle activation were observed during the three different exercises. Rectus abdominis activation was the greatest during plank exercise, while superficial lumbar multifidus activity peaked during feet suspended lunge and bridging.
Conclusion: Considering the levels of activity of all investigated muscles, plank seems to have the highest and lunge the least impact on improving the stability of core region.
کلیدواژهها [English]
10. Behm D, Colado JC. The effectiveness of resistance training using unstable surfaces and devices for rehabilitation. International Journal of Sports Physical Therapy 2012;7(2):226-41. ##
11. Snarr RL, Hallmark AV, Nickerson BS, Esco MR. Electromyographical comparison of pike variations performed with and without instability devices. The Journal of Strength & Conditioning Research 2016;30(12):3436-42. ##
12. Chung S, Lee J, Yoon J. Effects of stabilization exercise using a ball on mutifidus cross-sectional area in patients with chronic low back pain. Journal of Sports Science & Medicine 2013;12(3):533-41. ##
13. Konrad P. The abc of emg. A Practical Introduction to Kinesiological Electromyography. 2005;1:30-5. ##
14. Beach TA, Howarth SJ, Callaghan JP. Muscular contribution to low-back loading and stiffness during standard and suspended push-ups. Human Movement Science 2008;27(3):457-72. ##
15. Snarr RL, Esco MR. Comparison of electromyographic activity when performing an inverted row with and without a suspension device. Journal of Exercise Physiology 2013;26(4.2):51-8. ##
16. Snarr RL, Esco MR. Electromyographic comparison of traditional and suspension push-ups. Journal of human kinetics 2013;39(1):75-83. ##
17. Lehman GJ, Hoda W, Oliver S. Trunk muscle activity during bridging exercises on and off a swissball. Chiropractic & osteopathy 2005;13(1):14-22. ##
18. Miller WM, Wagganer JD, Barnes JT, Sofo SS, Godard MP. Assessment of electromyographic activity during a TRX and traditional split-squat. Medicine & Science in Sports & Exercise 2016;48(5S):733. ##
19. Dawes J. Complete Guide to TRX Suspension Training: Human Kinetics; 2017. ##
20. Cram JR. Introduction to surface electromyography: Aspen Publishers; 1998. ##
21. Assis R, Souza R, Araujo R. Study on placing electromyography electrodes on lumbar multifidus muscles. Brazilian Journal of Morphological Sciences 2011;28(1):46-51. ##
22. Montes AM, Gouveia S, Crasto C, de Melo CA, Carvalho P, Santos R, Vilas-Boas JP. Abdominal muscle activity during breathing in different postural sets in healthy subjects. Journal of Bodywork and Movement Therapies 2017;21(2):354-61. ##
23. De Luca CJ. The use of electromyography in biomechanics. Journal of Applied Biomechanics 1997; 13:135-63. ##
24. Basmajian JV, DeLuca CJ. Muscles Alive: Their Functions Revealed by Electromyography. Baltimore, MD: Williams & Wilkins; 1985. ##
25. Marras WS, Davis KG. A non-MVC EMG normalization technique for the trunk musculature: Part 1. Method development. Journal of Electromyography and Kinesiology 2001;11(1):1-9. ##
26. Hislop HJ, Montgomery J. Muscle Testing: Techniques of Manual Examination. Philadelphia, PA: W.B. Saunders Co; 2002. ##
27. Marshall PW, Murphy BA. Core stability exercises on and off a Swiss ball. Archives of Physical Medicine and Rehabilitation 2005;86(2):242-9.ر
28. Edgerton VR, Wolf SL, Levendowski DJ, Roy RR. Theoretical basis for patterning EMG amplitudes to assess muscle dysfunction. Medicine and Science in Sports and Exercise 1996;28(6):744-51. ##
29. Arokoski JP, Valta T, Airaksinen O, Kankaanpaa M. Back and abdominal muscle function during stabilization exercises. Archives of Physical Medicine and Rehabilitation 2001; 82:1089-98. ##
30. Tsai YS, Sell TC, Myers JB, McCrory JL, Laudner KG, Pasquale MR, Lephart SM. The relationship between hip muscle strength and golf performance. Medicine & Science in Sports & Exercise 2004;36(5):S9. ##
31. Watkins RG, Dennis S, Dillin WH, et al. Dynamic EMG analysis of torque transfer in professional baseball pitchers. Spine 1989; 14:404-8. ##
32. Watkins RG, Uppal GS, Perry J, Pink M, Dinsay JM. Dynamic electromyographic analysis of trunk musculature in professional golfers. American Journal of Sports Medicine 1996; 24:535-8. ##
33. Yarahmadi Y, Haddadnezhad M, Shojaeddin S. The effect of suspended exercises on somatosensory and lumbopelvic control in men with chronic low back pain. Journal of sport sciences and educational applied researches without border 2016;2(5):130-48. ##