نوع مقاله : مقاله پژوهشی
نویسندگان
1 دانشجوی دکترای روانشناسی و آموزش کودکان استثنایی، دانشکده روانشناسی و علوم تربیتی، دانشگاه تهران، تهران، ایران
2 استاد، دانشکده مهندسی پزشکی، عضو هیئت علمیدانشگاه صنعتی امیرکبیر، تهران، ایران
3 روانپزشک، دانشیار دانشکده علوم توانبخشی، دانشگاه علوم پزشکی شهید بهشتی، تهران، ایران
4 استاد ممتاز، دانشکده روانشناسی و علوم تربیتی، عضو هیئت علمیدانشگاه تهران، تهران، ایران
5 دانشکده روانشناسی و علوم تربیتی، دانشگاه تهران، تهران، ایران
6 دانشیار، دانشکده مهندسی پزشکی، عضو هیئت علمیدانشگاه صنعتی امیرکبیر، تهران، ایران
چکیده
کلیدواژهها
موضوعات
عنوان مقاله [English]
نویسندگان [English]
Background and Aim: The incidence of behavioral disorders among children and teenagers has recently found interest among researchers. Due to their harsh and offensive mood, most of the affected individuals are rejected from their families and society, which leads to decreasing their chance of normal development, so it is important to identify and treat them in the course as early as possible. Diagnosing and distinguishing attention deficit/hyperactivity disorder from other similar behavioral disorders such as depression, anxiety, comorbid depression and anxiety, and conduct disorders is one of the most important and essential proceedings in field of child psychology disorders.
Materials and Methods: The samples consisted of 271 children, including 44 with ADHD, 31 with conduct, 35 with depression, 33 with mixed depression and anxiety, and 41 with anxiety as well as 87 children with normal but temporarily aggressive behavior. In the present study, two different decision support systems, multilayer perceptron and Radial Basis Function neural networks, were designed and compared based on the signs and symptoms.
Results: The mean of accuracy of the networks in diagnosis and distinguishing reached to 95.57 and 96.30 percentages with MLP and RBF, respectively. Therefore, the designed decision support systems, especially RBF, was observed to be a reliable assistant for the experts in the diagnosis and distinguishing the mentioned behavioral disorders.
Conclusion: Both designed systems, especially RBF, can be used as a reliable device for distinguishing, diagnosing, and also screening of child emotional and behavioral disorders
کلیدواژهها [English]
10. Nair J., Nair S.S., Kashani J.H., Reid J.C., Mistry S.I., Vargas V.G. Analysis of the symptoms of depression- A neural network approach. Psychiatry Research 1999; 87: P.193–201.##
12. Murias M. Swanson JM. Srinivasan R. Functional connectivity of frontal cortex in healthy and ADHD children reflected in EEG coherence. Cerebral Cortex 2007; 17: P. 1788–1799.##
13. Özyılmaz L. Yıldırım T. Artificial Neural Networks for Diagnosis of Hepatitis Disease. International Joint Conference on Neural Networks 2003; 1: P. 586–589.##
14. Zou Y., Shen Y., Shu L., Wang Y., Feng F., Xu K., Ou Y., Song Y., Zhong Y., Wang M., Liu W. Artificial neural network to assist psychiatric diagnosis. The British Journal of Psychiatry 1996; 169: P. 64–67. ##
17. Pierce J.S., Hostutler C., Watson T.S. A pilot study using a computer-based rule following task to distinguish adolescents with and without a behavior disorder. Computers in Human Behavior 2012; 28: P. 1103- 1108.##
18. Krebs G., Liang H., Hilton K., Macdiarmid F., Heyman I. Computer- assisted assessment of obsessive-compulsive disorder in young people: a preliminary evaluation of the Development and Well-Being Assessment. Child and Adolescent Mental Health 2012; 17: 246-251.##
21. Kecman V. Learning and Soft Computing: Support Vector Machines. Neural Networks and Fuzzy Logic Systems (Complex Adaptive Systems). MIT Press, Cambridge, Massachusetts 2001.##
24. Ghosh-Dastidar S., Adeli H., Dadmehr N. Principal component analysis-enhanced cosine radial basis function neural network for robust epilepsy and seizure detection. IEEE Transactions on Biomedical Engineering 2008; 555: P.12–51.##
25. Pedrycz W., Rai R., Zurada J. Experience-consistent modeling for radial basis function neural networks. International Journal of Neural System 2008; 18: P.279–292.##
26. Savitha R., Suresh S., Sundararajan N. A fully complexvalued radial basis function network and its learning algorithm. International Journal of Neural Systems 2009; 19: P.253–267.##
27. Langberg JM., Froehlich TE., Loren RE., Martin JE., Epstein JN. Assessing children with ADHD in primary care settings. Expert Review of Neurotherapeutics 2008; 8: P. 627–41.##
28. Bennett C.C., Hauser K. Artificial intelligence framework for simulating clinical decision-making: A Markov decision process approach. Artificial Intelligence in Medicine 2013; 57(1): P.9–19##
29. Yevseyeva I., Miettinen K., Räsänen P. Decision support system for attention deficit hyperactivity disorder diagnostics. ORP3 2005; Valencia, P.6–10.##