تأثیر بازخورد بیرونی بر کینماتیک اندام تحتانی و قدرت واکنشی افراد با ولگوس دینامیک زانو حین انجام تکلیف حرکتی پرش فرود

نوع مقاله : مقاله پژوهشی

نویسنده

گروه آسیب‌شناسی ورزشی و حرکات اصلاحی، دانشکده تربیت‌بدنی و علوم ورزشی، دانشگاه علامه طباطبائی، تهران، ایران.

10.32598/SJRM.13.6.3269

چکیده

مقدمه و اهداف اثربخشی بازخورد بیرونی آنی بر کاهش عوامل خطرزای بیومکانیکی به‌خوبی ثابت شده است، اما به‌طور همزمان ارتباط آن با عملکرد پرشی ورزشکاران ناشناخته باقی مانده است. بنابراین هدف از مطالعه حاضر بررسی تأثیر بازخورد بیرونی بر کینماتیک اندام تحتانی و قدرت واکنشی افراد با ولگوس دینامیک زانو (DVK) حین انجام تکلیف حرکتی پرش فرود دو پا (DLDVJ) بود.
مواد و روش‌ها در مطالعه نیمه‌تجربی حاضر، 21 ورزشکار تفریحی مرد با نقص حرکتی ولگوس دینامیک زانو و دامنه سنی 18 تا 25 سال شرکت کردند. اطلاعات مرتبط با زوایای مفاصل اندام تحتانی در هر سه صفحه حرکتی قبل و بعد از ارائه آنی بازخورد بیرونی حین انجام تکلیف حرکتی پرش فرود دو پا در 2 فاز اکسنتریک و کانسنتریک ثبت شد. عملکرد پرشی بر‌اساس شاخص قدرت واکنشی تعدیل‌شده (RSImod) محاسبه و بیان شد.
یافته‌ها نتایج مطالعه حاضر حاکی از کاهش معنادار زاویه اداکشن هیپ در فاز اکسنتریک (0/001=‌P)، در فاز کانسنتریک (0/001=‌P)، و در موقعیت حداکثر فلکشن زانو (0/001=‌P) و همچنین کاهش چرخش خارجی تیبیوفمورال در فاز اکسنتریک (0/031=‌P)، کانسنتریک (0/019=‌P) و در موقعیت حداکثر فلکشن زانو (0/037=‌P) بعد از ارائه مداخله نسبت به قبل از مداخله بود. علاوه‌بر‌این به‌طور معناداری افزایش فلکشن زانو در فاز اکسنتریک (0/007=‌P) و موقعیت حداکثر خم شدن زانو (0/017=‌P) بعد از ارائه مداخله نسبت به قبل از مداخله مشاهده شد. در‌رابطه‌با عملکرد پرشی، ارائه مداخله با افزایش زمان تیک‌آف (0/039=‌P) و متعاقباً کاهش عملکرد پرشی بر‌اساس شاخص قدرت واکنشی تعدیل‌شده (0/011=‌P) همراه بود.
نتیجه‌گیری نتایج مطالعه حاضر نشان می‌دهد مداخله بازخورد بیرونی به‌صورت آنی نقص حرکتی ولگوس دینامیک زانو را بدون ایجاد اختلال در ارتفاع پرش ورزشکاران در حین انجام تکلیف حرکتی پرش فرود دو پا بهبود می‌بخشد، اما این با کاهش زمان تیک‌آف و متعاقباً با کاهش عملکرد پرشی بر مبنای شاخص قدرت واکنشی تعدیل‌شده بود. با وجود این به‌عنوان یک برنامه پیشگیری از آسیب‌های ورزشی مبتنی بر شواهد، اثربخشی بهبود نقص حرکتی ولگوس دینامیک زانو بر عملکرد پرش ورزشکاران باید در دراز‌مدت به‌عنوان یک الگوی حرکتی جدید مورد بررسی قرار گیرد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

The Effect of Augmented Feedback on Lower Limb Kinematics and Jumping Performance of Male Athletes With Dynamic Knee Valgus During a Double-leg Drop Vertical Jump Task

نویسنده [English]

  • Ramin Balouchy
Department of Sport Injuries and Corrective Exercises, Faculty of Physical education and Sport Science, Allameh Tabataba’I University, Tehran, Iran.
چکیده [English]

Background and Aims The immediate impact of augmented feedback on biomechanical risk factors has been well established, but its effect on the jumping performance of athletes is still unknown. Therefore, this study aims to evaluate the effect of augmented feedback on lower limb kinematics and jumping performance of male athletes with dynamic knee valgus (DKV) during a double-leg drop vertical jump (DLDVJ) task.
Methods In this quasi-experimental study, 21 male recreational athletes with DKV aged 1-25 years participated. Three-dimensional kinematic and kinetic data were collected simultaneously before and after augmented feedback during the DLDVJ task at the eccentric and concentric phases. The jumping performance was calculated by using the reactive strength index-modified (RSImod). 
Results The results showed a significant decrease in the hip adduction angle in the eccentric (P=0.001) and concentric (P=0.001) phases in the maximum knee flexion position (P=0.001) after the intervention compared to the pre-intervention stage. Also, there was a decrease in external tibiofemoral rotation in the eccentric (P=0.031) and concentric (P=0.019) phases in the maximum knee flexion position (P=0.037). In addition, a significant increase in knee flexion in the eccentric phase (P=0.007) and maximum knee flexion position (P=0.017) was reported after the intervention compared to the pre-intervention stage. Regarding jumping performance, the intervention was associated with an increase in the take-off time (P=0.039) and a subsequent decrease in the RSImod value (P=0.011).
Conclusion The augmented feedback can immediately improve the DKV without reducing the jump height during a DLDVJ task in male athletes, but it reduces the take-off time and, subsequently, the jumping performance (The RSImod value). As an evidence-based sports injury prevention program, the effects of improving DKV on athletes’ jumping performance in the long term should be investigated in future studies.

کلیدواژه‌ها [English]

  • Jumping performance
  • Dynamic knee valgus
  • Augmented feedback
  • Plyometrics
  1. Skazalski C, Whiteley R, Bahr R. High jump demands in professional volleyball-large variability exists between players and player positions. Scandinavian Journal of Medicine & Science in Sports. 2018; 28(11):2293-8. [DOI:10.1111/sms.13255] [PMID]
  2. Suchomel TJ, Nimphius S, Stone MH. The importance of muscular strength in athletic performance. Sports Medicine. 2016; 46(10):1419-49. [DOI:10.1007/s40279-016-0486-0] [PMID]
  3. Ebben WP, Petushek EJ. Using the reactive strength index modified to evaluate plyometric performance. Journal of Strength and Conditioning Research. 2010; 24(8):1983-7. [DOI:10.1519/JSC.0b013e3181e72466][PMID]
  4. Ruffieux J, Wälchli M, Kim KM, Taube W. Countermovement jump training is more effective than drop jump training in enhancing jump height in non-professional female volleyball players. Frontiers in physiology. 2020; 11:231. [DOI:10.3389/fphys.2020.00231][PMID]
  5. Berton R, Lixandrão ME, Pinto E Silva CM, Tricoli V. Effects of weightlifting exercise, traditional resistance and plyometric training on countermovement jump performance: A meta-analysis. Journal of Sports Sciences. 2018; 36(18):2038-44. [DOI:10.1080/02640414.2018.1434746][PMID]
  6. Beyer EB, Hale RF, Hellem AR, Mumbleau AM, Schilaty ND, Hewett TE. Inter and intra-rater reliability of the drop vertical jump (DVJ) assessment. International Journal of Sports Physical Therapy. 2020; 15(5):770-5. [DOI:10.26603/ijspt20200770][PMID]
  7. Guy-Cherry D, Alanazi A, Miller L, Staloch D, Ortiz-Rodriguez A. Landing styles influences reactive strength index without increasing risk for injury. Sports Medicine International Open. 2018; 2(2):E35-40. [DOI:10.1055/a-0608-4280][PMID]
  8. Peel SA, Schroeder LE, Weinhandl JT. Lower extremity muscle contributions to ACL loading during a stop-jump task. Journal of Biomechanics. 2021; 121:110426. [DOI:10.1016/j.jbiomech.2021.110426][PMID]
  9. Stroube BW, Myer GD, Brent JL, Ford KR, Heidt RS Jr, Hewett TE. Effects of task-specific augmented feedback on deficit modification during performance of the tuck-jump exercise. Journal of Sport Rehabilitation. 2013; 22(1):7-18. [DOI:10.1123/jsr.22.1.7][PMID]
  10. Collings TJ, Diamond LE, Barrett RS, Timmins RG, Hickey JT, DU Moulin WS, et al. Strength and biomechanical risk factors for noncontact ACL injury in elite female footballers: A prospective study. Medicine and Science in Sports and Exercise. 2022; 54(8):1242-51. [DOI:10.1249/MSS.0000000000002908][PMID]
  11. Larwa J, Stoy C, Chafetz RS, Boniello M, Franklin C. Stiff landings, core stability, and dynamic knee valgus: A systematic review on documented anterior cruciate ligament ruptures in male and female athletes. International Journal of Environmental Research and Public Health. 2021; 18(7):3826. [DOI:10.3390/ijerph18073826][PMID]
  12. Hewett TE, Myer GD, Ford KR, Heidt RS Jr, Colosimo AJ, McLean SG, et al. Biomechanical measures of neuromuscular control and valgus loading of the knee predict anterior cruciate ligament injury risk in female athletes: A prospective study. The American Journal of Sports Medicine. 2005; 33(4):492-501. [DOI:10.1177/0363546504269591][PMID]
  13. Fagenbaum R, Darling WG. Jump landing strategies in male and female college athletes and the implications of such strategies for anterior cruciate ligament injury. The American Journal of Sports Medicine. 2003; 31(2):233-40. [DOI:10.1177/03635465030310021301][PMID]
  14. Fain AC, Seymore KD, Lobb NJ, Brown TN. Lower-limb biomechanics differ between sexes during maximal loaded countermovement jumps. Journal of Strength and Conditioning Research. 2021; 35(2):325-31. [DOI:10.1519/JSC.0000000000003889][PMID]
  15. Xiang L, Mei Q, Xu D, Fernandez J, Gu Y. Multi-segmental motion in foot during counter-movement jump with toe manipulation. Applied Sciences. 2020; 10(5):1893. [DOI:10.3390/app10051893]
  16. Marshall AN, Hertel J, Hart JM, Russell S, Saliba SA. Visual biofeedback and changes in lower extremity kinematics in individuals with medial knee displacement. Journal of Athletic Training. 2020;55(3):255-64. [DOI:10.4085/1062-6050-383-18][PMID]
  17. Onate JA, Guskiewicz KM, Sullivan RJ. Augmented feedback reduces jump landing forces. The Journal of Orthopaedic and Sports Physical Therapy. 2001; 31(9):511-7. [DOI:10.2519/jospt.2001.31.9.511][PMID]
  18. Dai B, Garrett WE, Gross MT, Padua DA, Queen RM, Yu B. The effects of 2 landing techniques on knee kinematics, kinetics, and performance during stop-jump and side-cutting tasks. The American Journal of Sports Medicine. 2015; 43(2):466-74. [DOI:10.1177/0363546514555322][PMID]
  19. Brown DW, Taylor KA, Utturkar GM, Spritzer CE, Queen RM, Garrett WE, et al. Modification of in vivo ACL strain patterns during jump landing through verbal instruction. Paper presented at: Orthopaedic Research Society 2012 Annual Meeting. 2012. [Link]
  20. Moran KA, Wallace ES. Eccentric loading and range of knee joint motion effects on performance enhancement in vertical jumping. Human Movement Science. 2007; 26(6):824-40. [DOI:10.1016/j.humov.2007.05.001][PMID]
  21. McKay CD, Merrett CK, Emery CA. Predictors of FIFA 11+ implementation intention in female adolescent soccer: an application of the health action process approach (HAPA) model. International Journal of Environmental Research and Public Health. 2016; 13(7):657. [DOI:10.3390/ijerph13070657][PMID]
  22. McKay CD, Steffen K, Romiti M, Finch CF, Emery CA. The effect of coach and player injury knowledge, attitudes and beliefs on adherence to the FIFA 11+ programme in female youth soccer. British Journal of Sports Medicine. 2014; 48(17):1281-6. [DOI:10.1136/bjsports-2014-093543][PMID]
  23. Steffen K, Bakka HM, Myklebust G, Bahr R. Performance aspects of an injury prevention program: A ten-week intervention in adolescent female football players. Scandinavian Journal of Medicine & Science in Sports. 2008; 18(5):596-604. [DOI:10.1111/j.1600-0838.2007.00708.x][PMID]
  24. Vescovi JD, VanHeest JL. Effects of an anterior cruciate ligament injury prevention program on performance in adolescent female soccer players. Scandinavian Journal of Medicine & Science in Sports. 2010; 20(3):394-402. [DOI:10.1111/j.1600-0838.2009.00963.x][PMID]
  25. Pérez-Castilla A, Weakley J, García-Pinillos F, Rojas FJ, García-Ramos A. Influence of countermovement depth on the countermovement jump-derived reactive strength index modified. European Journal of Sport Science. 2021; 21(12):1606-16. [DOI:10.1080/17461391.2020.1845815][PMID]
  26. Gao ZX, Song Y, Yu PM, Zhang Y, Li SD. Acute effects of different stretching techniques on lower limb kinematics, kinetics and muscle activities during vertical jump. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2019; 40:1-5. [DOI:10.4028/www.scientific.net/JBBBE.40.1]
  27. Song Y, Zhao XX, Finnie KP, Shao SR. Biomechanical analysis of vertical jump performance in well-trained young group before and after passive static stretching of knee flexors muscles. Journal of Biomimetics, Biomaterials and Biomedical Engineering. 2018; 36:24-33. [DOI:14028/www.scientific.net/JBBBE.36.24]
  28. Power K, Behm D, Cahill F, Carroll M, Young W. An acute bout of static stretching: Effects on force and jumping performance. Medicine and Science in Sports and Exercise. 2004; 36(8):1389-96. [DOI:10.1249/01.MSS.00001351937.53][PMID]
  29. Leukel C, Gollhofer A. Applying augmented feedback in basketball training facilitates improvements in jumping performance. European Journal of Sport Science. 2023; 23(3):338-44. [DOI:10.1080/17461391.2022.2041732][PMID]
  30. Leukel C, Karoß S, Gräßlin F, Nicolaus J, Gollhofer A. Do primary school children benefit from drop-jump training with different schedules of augmented feedback about the jump height? Sports. 2022; 10(9):133. [DOI:10.3390/sports10090133][PMID]
  31. Keller M, Lauber B, Gottschalk M, Taube W. Enhanced jump performance when providing augmented feedback compared to an external or internal focus of attention. Journal of Sports Sciences. 2015; 33(10):1067-75. [DOI:10.1080/02640414.2014.984241][PMID]
  32. Heydarian M, Babakhani F, Hatefi M, Balouchi R, Mohammadian M. Effects of a band loop on muscle activity and dynamic Knee valgus during pedaling. Gait & Posture. 2020; 82:301-5. [DOI:10.1016/j.gaitpost.2020.09.021][PMID]
  33. Lima YL, Ferreira VMLM, de Paula Lima PO, Bezerra MA, de Oliveira RR, Almeida GPL. The association of ankle dorsiflexion and dynamic knee valgus: A systematic review and meta-analysis. Physical Therapy in Sport. 2018; 29:61-9. [DOI:10.1016/j.ptsp.2017.07.003][PMID]
  34. McNair PJ, Prapavessis H, Callender K. Decreasing landing forces: Effect of instruction. British Journal of Sports Medicine. 2000; 34(4):293-6. [DOI:10.1136/bjsm.34.4.293][PMID]
  35. Suchomel TJ, Bailey CA, Sole CJ, Grazer JL, Beckham GK. Using reactive strength index-modified as an explosive performance measurement tool in Division I athletes. Journal of Strength and Conditioning Research. 2015; 29(4):899-904. [DOI:10.1519/JSC.0000000000000743][PMID]
  36. Kipp K, Kiely MT, Giordanelli MD, Malloy PJ, Geiser CF. Biomechanical determinants of the reactive strength index during drop jumps. International Journal of Sports Physiology and Performance. 2018; 13(1):44-9. [DOI:10.1123/ijspp.2017-0021][PMID]
  37. Beckham GK, Suchomel TJ, Sole CJ, Bailey CA, Grazer JL, Kim SB, et al. Influence of sex and maximum strength on reactive strength index-modified. Journal of Sports Science & Medicine. 2019; 18(1):65-72. [PMID]
  38. Ford KR, DiCesare CA, Myer GD, Hewett TE. Real-time biofeedback to target risk of anterior cruciate ligament injury: A technical report for injury prevention and rehabilitation. Journal of Sport Rehabilitation. 2015; 24(2):2013-0138. [DOI:10.1123/jsr.2013-0138][PMID]
  39. Loewen AM, Erdman A, Tulchin-Francis K, Ulman S, Group PrMARI. Differences in lower extremity kinematics based on drop vertical jump task variations. Orthopaedic Journal of Sports Medicine. 2022; 10(5_suppl2):2325967121S00492. [DOI:10.1177/2325967121S00492]
  40. Yu B, McClure SB, Onate JA, Guskiewicz KM, Kirkendall DT, Garrett WE. Age and gender effects on lower extremity kinematics of youth soccer players in a stop-jump task. The American Journal of Sports Medicine. 2005; 33(9):1356-64. [DOI:10.1177/0363546504273049][PMID]
  41. Myer GD, Stroube BW, DiCesare CA, Brent JL, Ford KR, Heidt RS Jr, et al. Augmented feedback supports skill transfer and reduces high-risk injury landing mechanics: A double-blind, randomized controlled laboratory study. The American Journal of Sports Medic 2013; 41(3):669-77. [DOI:10.1177/0363546512472977][PMID]
  42. Neilson V, Ward S, Hume P, Lewis G, McDaid A. Effects of augmented feedback on training jump landing tasks for ACL injury prevention: A systematic review and meta-analysis. Physical Therapy in Sport. 2019; 39:126-35. [DOI:10.1016/j.ptsp.2019.07.004][PMID]
  43. Halonen KS, Mononen ME, Jurvelin JS, Töyräs J, Salo J, Korhonen RK. Deformation of articular cartilage during static loading of a knee joint-experimental and finite element analysis. Journal of Biomechanics. 2014; 47(10):2467-74. [DOI:10.1016/j.jbiomech.2014.04.013][PMID]
  44. Song Y, Cen X, Chen H, Sun D, Munivrana G, Bálint K, et al. The influence of running shoe with different carbon-fiber plate designs on internal foot mechanics: A pilot computational analysis. Journal of Biomechanics. 2023; 153:111597. [DOI:10.1016/j.jbiomech.2023.111597][PMID]
  45. Bougie TL. Movement system impairment syndromes of the extremities, cervical and thoracic spines| Movement system impairment syndromes of the extremities, cervical and thoracic spines, Shirley Sahrmann. Mosby: Elsevier; 2011. [Link]
  46. Taube W, Leukel C, Lauber B, Gollhofer A. The drop height determines neuromuscular adaptations and changes in jump performance in stretch-shortening cycle training. Scandinavian Journal of Medicine & Science in Sports. 2012; 22(5):671-83. [DOI:10.1111/j.1600-0838.2011.01293.x][PMID]
  47. Hammami M, Gaamouri N, Shephard RJ, Chelly MS. Effects of contrast strength vs. plyometric training on lower-limb explosive performance, ability to change direction and neuromuscular adaptation in soccer players. Journal of Strength and Conditioning Research. 2019; 33(8):2094-103. [DOI:10.1519/JSC.0000000000002425][PMID]
دوره 13، شماره 6
بهمن و اسفند 1403
صفحه 1064-1077
  • تاریخ دریافت: 18 اردیبهشت 1403
  • تاریخ بازنگری: 20 اردیبهشت 1403
  • تاریخ پذیرش: 23 اردیبهشت 1403
  • تاریخ اولین انتشار: 23 اردیبهشت 1403